In Intact Cone Photoreceptors, a Ca2+-dependent, Diffusible Factor Modulates the cGMP-gated Ion Channels Differently than in Rods
نویسندگان
چکیده
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K1/2 for cGMP is 335.5 +/- 64.4 microM in the presence of 20 microM Ca2+, and 84.3 +/- 12.6 microM in its absence. For 8Br-cGMP, K1/2 is 72.7 +/- 11.3 microM in the presence of 20 microM Ca2+ and 15.3 +/- 4.5 microM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K1/2 for 8Br-cGMP is 17.9 +/- 3.8 microM in the presence of 20 microM Ca2+ and 7.2 +/- 1.2 microM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 microM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at KCa = 286 +/- 66 nM Ca2+. In rods, by contrast, KCa is approximately 50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.
منابع مشابه
Divalent Cation Selectivity Is a Function of Gating in Native and Recombinant Cyclic Nucleotide–gated Ion Channels from Retinal Photoreceptors
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially...
متن کاملIn Intact Mammalian Photoreceptors, Ca2+-dependent Modulation of cGMP-gated Ion Channels Is Detectable in Cones but Not in Rods
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly sa...
متن کامل-dependent, Diffusible Factor Modulates the cGMP-gated Ion Channels Differently than in Rods
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in me...
متن کاملFraction of the Dark Current Carried by Ca2+ through Cgmp-Gated Ion Channels of Intact Rod and Cone Photoreceptors
The selectivity for Ca(2+) over Na(+), PCa/PNa, is higher in cGMP-gated (CNG) ion channels of retinal cone photoreceptors than in those of rods. To ascertain the physiological significance of this fact, we determined the fraction of the cyclic nucleotide-gated current specifically carried by Ca(2+) in intact rods and cones. We activated CNG channels by suddenly (<5 ms) increasing free 8Br-cGMP ...
متن کاملDifferences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells
We measured currents under voltage clamp in intact retinal rod photoreceptors with tight seal electrodes in the perforated patch mode. In the dark, membrane depolarization to voltages > or = +20 mV activates a time- and voltage-dependent outward current in the outer segment. This dark voltage-activated current (DVAC) increases in amplitude with a sigmoidal time course that is voltage dependent....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 112 شماره
صفحات -
تاریخ انتشار 1998